
Length | Size(mm) | ||||
IC | S | APMX | BS | r | |
4 | 3.9 | 2.1 | 3.5 | 0.5-0.7 | 0.2-0.4 |
6 | 5.3 | 2.8 | 4.7 | 0.6-1.2 | 0.2-0.8 |
10 | 6.9 | 4 | 7 | 0.5-1.3 | 0.4-1.6 |
15 | 10.7 | 5 | 11 | 0.5-2.0 | 0.4-2.4 |
19 | 13.5 | 6 | 15 | 0.5-2.0 | 0.4-3.2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
Ov | TPKT040202R-M | 0.50-3.00 | 0.04-0.08 | ||||||||||||
TPKT040204R-M | 0.50-3.00 | 0.04-0.08 | |||||||||||||
TPKT060302R-M | 1.00-4.00 | 0.04-0.10 | O | ||||||||||||
TPKT060304R-M | 1.00-4.00 | 0.04-0.10 | . | O | |||||||||||
TPKT060308R-M | 1.00-4.00 | 0.04-0.10 | . | O | |||||||||||
TPKT100404R-M | 2.00-6.00 | 0.05-0.12 | · | O | |||||||||||
TPKT100408R-M | 2.00-6.00 | 0.05-0.12 | · | O | . | ||||||||||
TPKT100416R-M | 2.00-6.00 | 0.05-0.12 | · | . | |||||||||||
TPKT150508R-M | 3.00-9.00 | 0.07-0.17 | · | . | |||||||||||
TPKT150516R-M | 3.00-9.00 | 0.07-0.17 | |||||||||||||
TPKT150524R-M | 3.00-12.00 | 0.07-0.17 | · | ||||||||||||
TPKT190608R-M | 4.50-12.00 | 0.09-0.22 | |||||||||||||
TPKT190616R-M | 4.50-12.00 | 0.09-0.22 | . | . | |||||||||||
TPKT190624R-M | 4.50-12.00 | 0.09-0.22 | . | ||||||||||||
TPKT190632R-M | 4.50-12.00 | 0.09-0.22 | . | 0 | · | . |
Shoulder Milling Inserts
ANMx Inserts

Length | Size(mm) | |||||
L | W | S | APMX | BS | r | |
11 | 11.85 | 8.4 | 5.7 | 0.4-0.8 | ||
15 | 15.430 | 11 | 7.3 | 0.8-1.6 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
ANMX110504PNR | 2.00-9.00 | 0.10-0.20 | |||||||||||||
ANMX110508PNR | 3.00-9.00 | 0.10-0.20 | |||||||||||||
ANMX150608PNR | 4.50-12.00 | 0.10-0.20 | |||||||||||||
ANMX150616PNR | 5.00-12.00 | 0.10-0.20 |

Length | Size(mm) | ||||
IC | S | APMX | BS | r | |
4 | 4 | 3.1 | 3.5 | 0.2-0.8 | |
6 | 6.6 | 4.2-5.0 | 5.8-6.2 | 0.6-1.0 | 0.4-2.0 |
9 | 8.6 | 5.7-6.3 | 8 | 0.8-1.2 | 0.4-1.6 |
11 | 10.7 | 8.1 | 10.5 | 1 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||
ANKT040202R-M | 0.50-3.00 | 0.04-0.08 | ||||||||||||
ANKT040204R-M | 1.00-3.00 | 0.06-0.12 | · | · | ||||||||||
ANKT040208R-M | 1.00-3.00 | 0.06-0.12 | · | |||||||||||
ANKT060304R-M | 0.50-5.00 | 0.07-0.15 | . | |||||||||||
ANKT060308R-M | 1.00-5.00 | 0.07-0.15 | ||||||||||||
ANKT060312R-M | 1.00-5.00 | 0.07-0.15 | ||||||||||||
ANKT060316R-M | 2.00-4.50 | 0.07-0.15 | . | |||||||||||
ANKT060320R-M | 2.00-4.50 | 0.07-0.15 | ||||||||||||
ANKT090408R-M | 2.50-7.00 | 0.07-0.15 | ||||||||||||
ANKT090416R-M | 2.50-7.00 | 0.07-0.15 | ||||||||||||
ANKT110608R-M | 3.50-10.0 | 0.09-0.15 |
Shoulder Milling Inserts
LNGU Inserts

Length | Size(mm) | ||||
L | S | W | BS | r | |
11 | 12.16 | 4.83 | 6.6 | 1.4 | 0.4-1.2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
LNGU110404ERGE-GM | max=10 | 0.50-1.50 | |||||||||||||
LNGU11048ERGE-GM | max=10 | 0.50-1.50 | oo | .: | oo | . | . | oo | |||||||
WNMU Inserts

Length | Size(mm) | ||
S | d | r | |
5 | 4.2 | 3.4 | 0.8 |
8 | 6.65 | 6.2 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
WNMU050408EN-GM | 0.50-5.00 | 0.10-0.30 | O | ||||||||||||
WNMU080608EN-GM | 0.80-8.00 | 0.10-0.30 | O | ||||||||||||

Length | Size(mm) | |
L | S | |
08 | 7.5 | 6.45 |
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||
XNEX080608TR-GL | 0.80-8.00 | 0.10-0.30 | · | |||||||||||
XNEX080612TR-GL | 0.80-8.00 | 0.10-0.30 | . | |||||||||||
XNEX080608TR-GM | 0.80-8.00 | 0.10-0.30 | ||||||||||||
Shoulder Milling Inserts
RPMw Inserts

Length | Size(mm) | |||
r | 1.C | S | APMX | |
8 | 4 | 8 | 2.78 | 4 |
10 | 5 | 10 | 3.18 | 5 |
12 | 6 | 12 | 4.76 | 6 |
Shape | Type | ap (mm) | fz (mm/z) | CVD | PVD | ||||||||||
RPMW08T2MO | 1.00-3.00 | 0.05-0.25 | |||||||||||||
RPMW1003MO | 1.50-4.00 | 0.05-0.30 | |||||||||||||
RPMW1204MO | 1.50-5.00 | 0.05-0.35 | . | ||||||||||||

Length | Size(mm) | |||
r | 1.C | S | APMX | |
8 | 4 | 8 | 2.78 | 4 |
10 | 5 | 10 | 3.97 | 5 |
12 | 6 | 12 | 4.76 | 6 |
16 | 8 | 16 | 6.35 | 8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
RPMT08T2MOE-JM | 1.00-1.30 | 0.05-0.25 | |||||||||||||
RPMT10T3MOE-JM | 1.50-4.00 | 0.05-0.30 | |||||||||||||
RPMT1204MOE-JM | 1.50-5.00 | 0.05-0.35 | |||||||||||||
RPMT1606MOE-JM | 2.00-6.50 | 0.10-0.40 |

Length | Size(mm) | |||
r | I.C | S | APMX | |
8 | 4 | 8 | 2.78 | 4 |
10 | 5 | 10 | 3.18 | 5 |
12 | 6 | 12 | 4.76 | 6 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
RPMT08T2MO-GM | 1.50-4.00 | 0.10-0.30 | . | ||||||||||||
RPMT10T3MO-GM | 1.80-5.00 | 0.10-0.50 | |||||||||||||
RPMT1204MO-GM | 2.00-6.50 | 0.10-0.50 | |||||||||||||
Profile Milling Inserts
RDKT Inserts

Length | Size(mm) | |||
r | 1.C | S | APMX | |
8 | 4 | 8 | 3.18 | 4 |
10 | 5 | 10 | 3.97 | 5 |
12 | 6 | 12 | 4.76 | 6 |
16 | 8 | 16 | 5.56 | 8 |
20 | 10 | 20 | 6.35 | 10 |
Shape | Type | (mm) | (mm/z) | CVD | ||||||||||
RDKT0803MO | 1.00-3.00 | 0.05-0.25 | . | |||||||||||
RDKT10T3MO | 1.50-4.00 | 0.05-0.30 | . | |||||||||||
RDKT1204MO | 1.50-5.00 | 0.05-0.35 | ||||||||||||
RDKT1604MO | 2.00-6.50 | 0.10-0.40 | ||||||||||||
RDKT1605MO | 2.00-6.50 | 0.10-0.40 | ||||||||||||
RDKT1606MO | 2.00-6.50 | 0.10-0.40 | . | |||||||||||
RDKT2006MO | 3.00-8.00 | 0.10-0.40 | . | |||||||||||

Length | Size(mm) | |||
r | 1.C | S | APMX | |
8 | 4 | 8 | 2.78 | 4 |
10 | 5 | 10 | 3.97 | 5 |
12 | 6 | 12 | 4.76 | 6 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
RPMT0803-XR | 1.00-1.30 | 0.05-0.25 | · | ||||||||||||
RPMT10T3-XR | 1.50-4.00 | 0.05-0.30 | |||||||||||||
RPMT1204-XR | 1.50-5.00 | 0.05-0.35 | |||||||||||||
Profile Milling Inserts
RPMT Inserts

Length | Size(mm) | |||
r | 1.C | S | APMX | |
8 | 4 | 8 | 2.78 | 4 |
10 | 5 | 10 | 3.97 | 5 |
12 | 6 | 12 | 4.76 | 6 |

Shape | Type | (mm) | (mm/z) | CVD | ||||||||||
RPMT08T2MO | 1.5-4.0 | 0.1-0.3 | ||||||||||||
RPMT10T3MO | 1.8-5.0 | 0.1-0.5 | . | |||||||||||
RPMT1204MO | 2-6.5 | 0.1-0.5 | ||||||||||||
High Feed Milling Inserts
EPNW Inserts

Size(mm) | ||||
W | S | d | L | r |
6.28 | 3.18 | 2.8 | 9.79 | 1.6 |
Shape | Type | (mm) | (mm/z) | CVD | |||||||||||
EPNW0603TN-GH | max=1.5 | 0.15-0.50 | |||||||||||||
LPGT Inserts

Size(mm) | ||||
W | S | d | L | r |
4.19 | 2.19 | 2.1 | 6.26 | 1 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
LPGT010210ER-GM | max=1 | 0.50-1.50 | |||||||||||||
High Feed Milling Inserts
SDMT Inserts

Length | Size(mm) | ||
I.C | S | r | |
12 | 12.7 | 5.56 | 1.2 |
15 | 15.875 | 5.56 | 1.2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
D | SDMT120512-GM | 0.50-2.00 | 0.60-1.20 | ||||||||||||
SDMT150512-GM | 0.80-3.00 | 0.60-1.20 | . | . | |||||||||||

Length | Size(mm) | ||
1.C | S | r | |
6 | 6.35 | 2.58 | 0.8 |
9 | 9.525 | 3.97 | 1.2 |
12 | 12.7 | 4.76 | 1.2 |
15 | 15.875 | 5.56 | 2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SDMT06T208-GH | 0.50-1.20 | 0.50-1.00 | . | ||||||||||||
SDMT09T312-GH | 0.50-1.80 | 0.50-1.00 | . | . | |||||||||||
SDMT120412-GH | 0.50-2.00 | 0.60-1.20 | . | . | |||||||||||
SDMT150520-GH | 0.80-3.00 | 0.60-1.20 | |||||||||||||

Length | Size(mm) | ||||
I.C | S | d | r | AN(°) | |
10 | 10.3 | 4.58 | 4.6 | 2 | 16 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SOMT100420ER-GM | 0.10-1.20 | 0.20-2.00 | |||||||||||||

Length | Size(mm) | |||||
I.C | S | d | BS | r | AN(°) | |
14 | 14.76 | 5.56 | 5.8 | 1.6 | 2 | 16 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SOMT140520ER-GH | 0.50-2.00 | 0.42-2.00 | |||||||||||||
High Feed Milling Inserts
LNMU Inserts

Length | Size(mm) | ||||
r | APMX | L | 1.C | S | |
3 | 1.2 | 1 | 3.2 | 6 | 4.3 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
LNMU0303ZER-GM | 0.20-2.00 | 0.50-1.30 | . | ||||||||||||
Note: \bullet TheRecommended Gradeready tostock
LOGU Inserts

Length | Size(mm) | ||||
W | S | d | L | r | |
3 | 6.2 | 3.96 | 3.45 | 11.9 | 1 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
LOGU030310ER-GM | max=1 | 0.50-1.50 | |||||||||||||

Length | Size(mm) | |||
L | W | S | APMX | |
4 | 6 | 4.2 | 2.5 | 0.5 |
6 | 9 | 6.39 | 3.73 | 1 |
9 | 11.9 | 9.18 | 4.8 | 1.5 |
11 | 14.6 | 11.2 | 6.5 | 2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
BLMP0402R-GM | 0.10-0.50 | 0.20-1.50 | . | ||||||||||||
BLMP0603R-GM | 0.10-1.00 | 0.30-2.50 | |||||||||||||
BLMP0904R-GM | 0.10-1.50 | 0.30-3.50 | . | ||||||||||||
BLMP1105R-GM | 0.30-2.00 | 0.30-4.00 |
Milling inserts

Heat Resistant Alloys / Titanium Alloys
RPHX Inserts

Length | Size(mm) | |||
r | 1.C | S | APMX | |
10 | 5 | 10 | 3.97 | 5 |
12 | 6 | 12 | 4.76 | 6 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||||
RPHX10T3-DF | 1.50-4.00 | 0.05-0.30 | . | ||||||||||||||
RPHX1204-DF | 1.50-5.00 | 0.05-0.35 | |||||||||||||||
RPHX Inserts

Length | Size(mm) | |||
r | I.C | S | APMX | |
10 | 5 | 10 | 3.18 | 5 |
12 | 6 | 12 | 4.76 | 6 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
RPHX10T3-DM | 1.80-5.00 | 0.10-0.50 | |||||||||||||
RPHX1204-DM | 2.00-6.50 | 0.10-0.50 | |||||||||||||
Note:·TheRecommended Gradeready to stock
Heat Resistant Alloys / Titanium Alloys
APMT Inserts

Length | Size(mm) | |||
L | W | S | r | |
11 | 11.4 | 6.2 | 3.5 | 0.8 |
16 | 17.25 | 9.2 | 4.76 | 0.8、3 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | |||||||||||
APMT1135PDER-DF | 2.5-7.5 | 0.05-0.25 | ||||||||||||||
APMT160408PDER-DF | 3.5-10 | 0.07-0.5 | ||||||||||||||
APMT160430PDER-DF | 5.0-10 | 0.2-0.5 | ||||||||||||||
APMT1135PDER-DM | 2.5-7.5 | 0.05-0.35 | ||||||||||||||
APMT160408PDER-DM | 3.5-10 | 0.2-0.7 | . |
SDMT Inserts

Length | Size(mm) | ||
1.C | S | r | |
6 | 6.35 | 2.78 | 0.5 |
9 | 9 | 3.5 | 0.7 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||||
SDMT06T205-DM | 0.1-1.0 | . | |||||||||||||||
SDMT09T307-DM | 0.2-1.2 | . | |||||||||||||||

Length | Size(mm) | ||||
W | S | APMX | L | r | |
3 | 6 | 3.75 | 1 | 11.8 | 1.2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||||
LNMU0303ZER-MS | 0.2-2.0 | 0.5-1.3 | |||||||||||||||
Note:·The Recommended Grade readyto stock
45°Face Milling Inserts
SEMU Inserts

Length | Size(mm) | |||
BS | APMX | 1.C | S | |
12 | 1.5 | 6.5 | 12.7 | 4.76 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SEMT1204AFTN-GM | 3.00-8.50 | 0.09-0.16 | . | ||||||||||||

Length | Size(mm) | |||
BS | APMX | I.C | S | |
12 | 1.5 | 6.5 | 12.7 | 3.19 |
15 | 2 | 8.5 | 15.875 | 4.76 |
Shape | Type | ap (mm) | fz (mm/z) | CVD | PVD | ||||||||||
SEER1203-GM | 1.50-6.00 | 0.10-0.25 | |||||||||||||
SEER1504-GM | 1.50-8.00 | 0.10-0.25 | . | ||||||||||||
88°Approaching Angle Cost-effective Face Milling Inserts
SNMU Inserts

Length | Size(mm) | |||
1.C | S | BS | r | |
13 | 13 | 5.5 | 1 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | |||||||||
SNMU130508EN-GM | 1.0-5.0 | 0.1-0.25 | ||||||||||||
Cost-effective Face Milling Inserts
SNMX Inserts

Length | Size(mm) | ||
I.C | S | BS | |
12 | 12.7 | 6.4 | 1.5 |
16 | 16 | 7.7 | 1.8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | |||||||||
G | G | |||||||||||||
SNMX1205ANN-GM | 1.00-6.00 | 0.15-0.50 | . | |||||||||||
SNMX1606ANN-GM | 1.00-6.00 | 0.15-0.50 | . | |||||||||||

Length | Size(mm) | ||
I.C | S | r | |
9 | 9.525 | 5.5 | 0.8-1.1 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SNGX090408-GF | 2.50-7.50 | 0.08-0.15 | |||||||||||||
SNGX090411-GF | 2.50-7.50 | 0.08-0.15 | . | ||||||||||||

Length | Size(mm) | ||||
L | S | d | BCH | BS | |
09 | 12.2 | 13.4 | 5.35 | 4.5 | 2 |
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||||||
PNCU0905GNEN-GM | 0.50-3.00 | 0.20-0.60 | ||||||||||||||||
Cost-effective Face Milling Inserts
HNMG Inserts

Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
HNMG0907ANSN-R | 1.50-4.00 | 0.20-0.70 | |||||||||||||

Length | Size(mm) | ||
1.C | S | r | |
9 | 16.5 | 6.35 | 1.0 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
HNMG0907ANSN-M | 1.00-3.00 | 0.05-0.15 | |||||||||||||
Cost-effective Face Milling Inserts
XNMU Inserts

Length | Size(mm) | |||
1.C | S | d | r | |
7 | 12 | 5.8 | 4 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
XNMU070508-MM | 0.2-3.0 | 0.05-0.2 | . | ||||||||||||

Length | Size(mm) | ||||
1.C | S | d | BS | r | |
9 | 19.05 | 5.9 | 5.5 | 1.5 | 1.2 |
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||||||
XNMU090612-GR | 0.3-3.0 | 0.05-0.3 | ||||||||||||||||
Note:·TheRecommended Grade ready tostock
Cost-effective Face Milling Inserts
ONHU Inserts

Length | Size(mm) | ||
I.C | S | r | |
05 | 12.7 | 4.76 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD | ||||||||||
ONHU050408-AR | 0.8-3.5 | 0.2-0.35 | ||||||||||||

Length | Size(mm) | ||
I.C | S | r | |
05 | 12.7 | 4.76 | 0.8 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
ONHU050408-AF | 0.5-2.5 | 0.1-0.25 | |||||||||||||
Cost-effective Face Milling Inserts
ONMU Inserts

Length | Size(mm) | ||
I.C | S | BS | |
09 | 22 | 5.8 | 0.45 |
09 | 22 | 5.8 | 2.11 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
ONMU090520ANTN-GM | 0.80-2.50 | 0.10-0.20 | . | ||||||||||||
ONMU090520ANTN-GR | 1.00-3.50 | 0.10-0.20 | . | . | |||||||||||
Note:·The Recommended Grade ready to stock
Helix Milling Inserts
APKT Inserts

Length | Size(mm) | ||||
L | W | S | d | r | |
15 | 16.33 | 12.7 | 4.76 | 5.4 | 1.2 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
APKT150412-PM | 1.2-8 | 0.08-0.2 | · | ||||||||||||
APKT150415-KM | 1.2-8 | 0.08-0.2 | |||||||||||||
SPMT Inserts

Length | Size(mm) | ||||
r | L | I.C | S | d | |
12 | 0.8 | 12.7 | 12.7 | 4.76 | 5.5 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
SPMT120408-PM | 1.00-6.00 | 0.06-0.15 | . | ||||||||||||
SPMT120408-KM | 1.00-6.00 | 0.06-0.15 | . | ||||||||||||
Helical Milling Inserts
CNHX Inserts

Type | Size(mm) | ||
L | S | W | |
160608T | 16 | 12 | 6.4 |
LNKT Inserts
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||||||
CNHX160608T | 1.20-5.50 | 0.20-0.60 | ||||||||||||||||

Type | Size(mm) | ||
L | S | W | |
16090416 | 16 | 9.5 | 4.76 |
Shape | Type | (mm) | (mm/z) | CVD PVD | ||||||||||
LNKT16090416 | 1.60-12.00 | 0.15-0.50 | ||||||||||||
Note: * TheRecommended Gradeready tostock
LNKX Inserts

Type | Size(mm) | ||
L | S | W | |
120608 | 12.7 | 12.25 | 6.35 |
Shape | Type | (mm) | (mm/z) | CVD | PVD | ||||||||||
LNKX120608 | 2.00-7.00 | 0.10-0.20 | |||||||||||||
Drlling inserts

WCMT Inserts

Shape | Type | Boring Range (mm) | Size | Application | Grade | ||||||
L | 0l.C S | 中d | r | GW8251 | |||||||
GW0251 | |||||||||||
WCMT030208-GM | 16-20 | 3.8 | 5.56 | 2.38 | 2.8 0.8 | Semi-finishing | |||||
WCMT040208-GM | 21-25 | 4.3 | 6.35 | 2.38 | 3.1 | 0.8 | . | ||||
WCMT050308-GM | 26-30 | 5.4 | 7.94 | 3.18 | 3.2 | 0.8 | . | ||||
WCMT06T308-GM | 31-41 | 6.5 | 9.525 | 3.97 4.76 | 3.7 4.3 | 0.8 | |||||
WCMT080412-GM WCMT030208-GF | 42-58 16-20 | 8.7 3.8 | 12.7 5.56 | 2.38 | 2.8 | 1.2 0.8 | |||||
WCMT040208-GF | 21-25 | 4.3 | 6.35 | 2.38 | 3.1 | Finishing | |||||
WCMT050308-GF | 26-30 | 5.4 | 7.94 | 3.18 | 3.2 | 0.8 | |||||
WCMT06T308-GF | 31-41 | 6.5 | 9.525 | 3.97 | 3.7 | 0.8 | |||||
WCMT080412-GF | 42-58 | 8.7 | 12.7 | 4.76 | 4.3 | 0.8 1.2 |

Shape | Type | Boring Range (mm) | Size | r | ||||||
L ol.C | S | 中d | Application | Grade | ||||||
SPMT050204-GM | 12.5-15 | 5 | 5 | 2.38 | 2.2 | 0.4 | Semi-finishing | GW0251 | GW8251 . | |
SPMT060204-GM | 15.5-21.5 | 6 | 6 | 2.38 | 2.6 | 0.4 | ||||
SPMT07T308-GM | 22-27.5 | 7.94 | 7.94 | 3.97 | 2.8 | 0.8 | ||||
SPMT090408-GM | 28-33 | 9.8 | 9.8 | 4.3 | 4.2 | 0.8 | ||||
SPMT110408-GM | 34-41 | 11.5 | 11.5 | 4.76 | 4.4 | 0.8 | ||||
SPMT140512-GM | 42-50 | 14.3 | 14.3 | 5.2 | 5.75 | 1.2 | · |

Shape | Type | Boring Range (mm) | Size | Application | Grade | |||||
L ol.C | S | Φd | ||||||||
GW0251 | GW8251 | |||||||||
SOMT040204-VP | 13-16 | 1 | 4.4 | 2.38 | 2.2 | 0.4 | ||||
SOMT050204-VP | 13-16 | 1.2 | 4.9 | 2.38 | 2.2 0.4 | |||||
SOMT060204-VP | 16.5-17 | 1.8 | 5.7 | 2.38 | 2.6 0.4 | |||||
SOMT070306-VP | 17.5-19 | 1.8 | 6.8 | 2.8 2.6 | 0.6 | . | ||||
SOMT08T306-VP | 22.5-26.5 | 2 | 7.8 3.97 | 2.8 0.6 | ||||||
SOMT09T308-VP | 27.5-31.5 | 2.4 | 9.2 3.97 | 3.8 | Semi-finishing | |||||
SOMT11T308-VP | 32-36.5 | 3 | 11 3.97 | 0.8 3.8 | . | |||||
SOMT130408-VP | 37-43 | 3.2 | 12.8 4.4 | 4.5 | 0.8 0.8 |

Shape | Type | Boring Range | r Application | Grade | |||||
ol.c | |||||||||
SOMT050305C-LM | 24-29 | 8.40 | 3.00 | 3.20 | 0.50 | GW0251 | GW8251 | ||
SOMT060406C-LM | 30-41 | 10.20 | 3.50 | 4.00 | 0.60 | ||||
SOMT070406C-LM | 30-41 | 12.36 | 4.00 | 4.00 | 0.60 | . | · | ||
SOMT080508C-LM | 44-63 | 14.90 | 4.50 | 4.70 | 0.80 | ||||
SOMT090608C-LM | 44-63 | 17.90 | 5.50 | 4.70 | 0.80 | ||||
SPMT050308P-LM | 24-29 | 8.90 | 3.00 | 3.20 | 0.80 | Medium Machining | |||
SPMT060408P-LM | 30-41 | 10.70 | 3.50 | 4.00 | 0.80 | · | |||
SPMT070410P-LM | 30-41 | 12.70 | 3.95 | 4.00 | 1.00 | ||||
SPMT080510P-LM | 44-63 | 15.50 | 4.50 | 4.70 | 1.00 | ||||
SPMT090610P-LM | 44-63 | 18.60 | 5.50 | 4.70 | 1.00 | . |
Part One: General Technical Information for Turning Machining The Functions of Each Part of Turning Tools
0TheNamesofEachPartof TurningTools

Effects ofRake Angle
Larger rake angle makes cutting edge sharper. reducesresistantforcesofchipflow.diminishesfriction andpreventdeformation.leadingto smaller,less abrasion and higher surface quality. However, too large rakeanglewouldreducetherigidityandstrengthof tool. Heatcan'tbediffusedeasily,Seriousbreakage and abrasion on tool would occur,reducing too life.Please chooserake angle accordingtomachiningconditions.
Effectsof ClearanceAngle
Themainfunctionofclearanceangletoreducethe frictionbetweenthe clearanceface of tooland the surface of workpiece.When therakeangleis fixed, largerclearanceanglecanincreaseandtheachieve higher surface quality.However,if clearance angle is too large,the strength of cutting edge would decrease.Also, heatcan'tbediffusedeasilyandserious abrasionwould occur,reducing tool life.The principle of choosing clearance angle:Choosesmall clearanceangleif friction is not serious
Effectsof Inclined Angle
Positiveornegativeinclined angledeterminesthedirectionofchip flow, and also affects the strength and impact resistance of insert nose.
* As diagram(1) shows,when the inclined angle is negative, namelynose is in thelowest point as apposed to the bottom of tool, chips flow to the machined surface of workpiece.
Valueselection | Situations |
Small rakeangle | ·Whenmachiningbrittleandhardmaterials; ·When roughing and interrupted cutting |
Bigrakeangle | WhenmachiningPlasticorsoftmaterials; ·When finishing; |
Value selection | Situations |
Small clearance angle | lugder to increase nose strength when ·Whenmachiningbrittle andhardmaterials |
Large clearance | g |

As diagram(2)shows,when inclined angle is positive.namely the nose is in the highest point as apposed to the bottom of the tool, chips flow to the areas of workpiecesurfacethathaven'tbeenmachined.
* The change of inclined angle also affects insert nose strength and impact resistance.When theinclined angle isnegative.thenose isin thelowest point of cutting edge.When the cutting edge enters the workpiece,the contacting point is on the cuttingedgeorrakeface,protecting thenose fromimpact and increase the strength of the nose.Normally,negative inclined angle should be chosen fortools with bigrake angle.This can not only increase nose strength.But also prevent the impactof entry.

Effects ofApproachAngle
Reduces approaching angle increases thestrengthoftools and enable heat to diffuse easily,improving surface quality.This is becauce whenthe approachangle issmall,cuttingedgewidthislarge,and thentheunitwidthofcuttingedgebears lesscuttingforce.Meanwhile,toollifecanbeimproved.
Normally, select 90° approachangleforturningofslenderandstep shaft;select45°approach angleforexternalturning.End surface machining and chamfering.When approach angle islarger,radial force isreduced,cutting is stable,cuttingthicknessisincreased,andchipbreakingisexcellent.

Valueselection | Situations |
Smallapproach | For those materialswith highintensity,highhardness and hardened layeron the surface |
Bigapproachangle | Whenrigidityof themachineisnotenough |
Effects of Minor Angle
Minoranglsthemananlethatcaafftufacequalityandit canaaffct toostregthf theaproachanl toomallthefrictionetweenthecondaryflankandmachindsuraceofworkpiecewilincreaecausingvbratioh principle of selecting minor angle: Select smalminor angle when roughing or when the friction is unaffected and is on vibration.Select large minor angle whenfinishing.
Effects of Cutting Edge Grinding
According to different use occasions,choose a cutting edgemethod from the tablebelow
Shape of the cutting edge | shape |
sharpedge | |
comer | |
chamfer |
Cuingedgegrindingisaprocessingmethdusedtmaintainthecutting dgestrngthhegriding mout isargeth cutingestnth ydthtisredt thxiegringt wllcaeth sharpness is not enough, the cutting force will be large, but also may produce vibration.
Valueselection | Situations |
Small regrinding amount | ·Finishing machining-small Ap&Fn ·For processing soft materials ·When the machine or workpiece is not rigid enough |
Large regrinding amount | ·Roughmachining ·When machining hard materials and intermittent cutting ·When machinerigidity is good |
8NoseRadius
Noseradius significantlyaffects nose strength and surface quality.
Large noseradiusmeans highercuting edge strength,and theabrasion ontherakeface andclearanceface canbereducedtmextentweverif thneradiusistoareradialfrcewillincreaseandvirat easy to occur,affecting machiningprecision and surfacequality
Valueselection | Situations |
Small noseradius | Finishingatsmallcuttingdepth Machiningpartssuchasslendershaft When therigidity of themachine is not enough |
Largenoseradius | Whenroughing ·When machining hard materials(intermittent cutting) When therigidity of themachineis good enough |
Calculation Method of Turning Parameters
①CalculationofCuttingSpeed

In the formula:
Vc:Cutting speed(m/min) n:Rotating speed ofmain axle(rev/min) D:Diameter of workpiece(mm)
Forexample:Whentherotatingspeedis500ev/min and the diameter of workpiece is 80mm the cutting
2CalculationofFeedRate

In theformula:
f:Feed rate per rotation(mm/rev) L:Cuttinglengthperminute ({\mathsf{mm}}/{\mathsf{m i n}}) N:Rotating speed of main axle(rev/min)
Forexample:Whentherotatingspeedof mainaxleis
600ev/min,and the cutting length perminute is 150{mm/\min}
the feedrateper
rotating should be:
CuttingTimeCalculationofExternal and Internal Turning
In the formula: T: Cutting time(min) L: length of machined areas(mm) F:Feed rate(mm/rev) N:Rotating speed of main axle(rev/min) For example:Whentherotatingspeedofmainaxleis300rev/min, and thefeedrate is 0.15\mathsf{mm} /rev.thetime neededfora cutting lengthof |80\mathsf{mm} should be:
\mathbf{o} TimeCalculationEndSurfaceTurning(ConstantLinearSpeed)
1 the formula: T: Cutting time(min) Vc:length of machined areas(mm) F: Cutting speadFor end surface without hole
b \scriptstyle=0 theformulaisstillValid.
External turning



\Theta TheOretical ValueCalculationofMachinedSurfaceRoughness
In theformula:R:Theoreticalroughnessvalueofmachined surface F: Feed rate(mm/rev) Rc: Nose radius(mm)
Forexample:When thefeed rateis 0.25mm/rev,and the nose radiusis 0.8\mathsf{mm} .thetheoreticalroughnessvalueofmachined surface shouldbe:

The Influence of Three Elements of Turning on Machining
Normally, short machining time,long toolife and high machining precision are expected in machining, so the material quality.hardness. and shape of the workpiece.and properties of machine should be fully considered and then we canselect suitable tools and adopt high-efciency cutting parameters, namely three parameters.
① Cutting Speed(Vc)

(1)Definitionofcutting speed
When the workpiece is rotating on the machine,the number of is rotation per minute is defined as Rotating speed ofmainaxl(n).ecauseofitsrotation,thecutting speed measuredonthecontacting pointof diameteri defined as linear speed. (\mathsf{m}/\mathsf{m i n}) .Normally, linear, linear speed is considered to measure the effect of cutting speed on machining.
(2)EffectofCuttingSpeed
Cutting speedhas significant effect intollife.When thecutting speed is increased,cutting temperature wil increase and toollife willbe shortened.Cutting speed varies according to the different types and hardness of work-piece.The below conclusions are reached after many cutting experiments:
·Normally tool life would be reduced to half when the cutting speed is increased by 20% .Tool life would be 20% oftheoriginallifeifthecuttingspeedisraisedby 50%
·Low speed(20-40m/min)cutting could easilycause vibration and shortentoollife.
2 Feed Rate(Fn)
(1)Definitionoffeedrate
Feed rate is defined as the moving distance of tool after workpiece rotates for one circle, measured by mm/rotation.
(2)The influence of feedrate
Feed rate is akey factor that determines surface quality.Meanwhtile it also affect the range of chipforming and the thickness of chips during machining.
In termof theeffect ontoollifesmallfeed rateleadsto serious abrasiononclearanceface,reducing tol life.
③ Cutting Depth(ap)
(1)Definition of cutting depth
CuttingdepthisdefindasthediferenceetweenmachindsurfaceanduachineduraceMeasuredymmiishalfth lifferencevaluebetweentheoriginaldiameterandmachineddiameter.
(2)Effectof CuttingDepth
Cuttingdthhulermdythmachiinalwaceandshapfrceweanidtfmac tool rigidity.
The changeof cuting dethhaslileeffect on toolifeIf the cuing depthistolowThecutting neonly scrapesth hardenedlayerontheworkpiece surfacereducingtoolife.Whenthereshardened oxidelayeronworkpiecesurface. highercuingdepthshouldbeadptedwithinthepossiblerangeofmachinesowertoavoiduingnosjustcutingth hardened layerofworkpiece.
Blade Wear and Solution

(1)FlankWear

Problem:
Higher cutting resistance.Notch wear on flank.Poorroughness of surface or deterioration of
accuracy
Reason:
Soft grades. Excessive cutting speed. Smallflank angle. Low feed
Solutions:
Select a higher.wear-resistant grade.Reduce cutting speed Increase flank angle Increase feed

(2)Crater Wear

Problem:
Uncontrolled chipPoor surface quality when finishing High speed processing carbon steel
Reason:
Soft grades Excessive cutting speed Excessive feed The strength of chip breaker Insufficient
Solutions:
Change to ahigher wear-resistant grade Reduce cutting speed Reduce feed Select a higher
strengthchipbreaker

Problem:
Variationof dimensionNosewearcuttingedgedrapeorpassivating,whenprocessing alloysteel
Poorsurfaceroughness
Reason:
Soft gradeExcessivecuttingspeedExcessivecuttingdepthandfeedrateOverheatoncuttingedge
Solutions:
Selectahighered hardness cutting material Decrease cutting speed Decrease cutting depth and
feed rate Selecta higher thermal conductivity cutting material(CVD ^+ sufficientcoolant)
(4)Build-Up-Edge

Problem:
Workpiece dissolve with Cutting edgePoor surfaceroughness whenfinishingCutting resistance
increasedCutting soft materials
Reason:
Cutting speed too lowCutting edgeobtuseUnsuitabletool material
Solutions:
Increasecuttingspeedlncreaserake angleSelectsmallstickingforce
(5)Chip Hammering

Problem:
Part of the cutting edge that does not participate in cutting is damaged by chip hammering,the upperandsupportof theinsert maybedamaged.
Reason:
Chipfoldsbacktothecuttingedge
Solutions:Changethefeedrateandchooseanothertypeof chipbreaker
(6)Insert Fracture

Problem:
CuttingresistanceincreasedPoorsurfaceRoughness
Reason:
ToughnessinsufficientExcessivefeedrateStrengthof cuttingedgeinsufficient Instabilityof the
tool
Solutions:
Select a tougher grade Decrease feed rate Increase honing of cutting edge(chamfering to
rounding) Increase the stability and setting angle
(7)Themal Crack

Problem:
Crack by heat cycle(often happen in milling and interrupted cutting)
Reason:
Toughness of tool grade insufficient Swell and shrink by cutting heat(cold-thermocycling)
Soultions:
Cutting without coolant/Sufficient coolantSelect a tougher and more thermal shockresistance
grade
(8) Chipping

Problem:
Suddenfractureof cuttingedge(rakeface andflank)Instabilityinsert life
Reason:
Toughness insufficient Excessivefeed rate Strength of cutting edge insufficient Instability of the
tool
Solutions:
Select a tougher grade Decrease feed rate Increase honing of cutting edge (chamfering to
rounding)Increasethestabilityandsettingangle
Second Part:Technical Information About Indexable Miling Tools Function of Each Part in Face Milling

Designation | Function | Effect | ||
Axial rake angle yf | Determining the chipdirection | Negative,excellent capability of chip removal | ||
Radial rake angle yp | Demin sehethe cuing | Positive angle:good cutting performance | ||
Approach angle Kr | Dbeerminingthe chip | Kr↑,chip thickness ↑;Kr↓chip thickness ↓ | ||
Rake angle Ro | Determiningwhether easy and ast hecuting | Poor cutting performance, Hlthg Pogoutingstrenth | (-) | Good cuting performance, Lowstrength cutting edge |
Inclined angle 入s | Dirterming the chio low | (-)←0→(+) |
DMilling CutterParametersSelection
·Characteristics of Different Rake Angles Combined
Negative rake angle | Double positive rake angle | Double negative rake angle | Pesitiveand nenative | ||
A-R(-) | A-R(+) | ||||
0° rake angle | |||||
Positiverake | RR(-) | ||||
angle | Axial rake angleY | + | |||
Radialrake anglerpY | + |
Applicable material machined | P | √ | √ | |
M | √ | √ | ||
K | √ | √ | ||
N | √ | |||
S | √ | √ |
Selection of Approach Angle
·Selection Method of Cutting Tools
Designation | Schematicdiagram | Instruction |
45° | Axialforceisthelargest,itwillbend when machining thin-wall workpiece, reducing the precision of workpiece.lt canhelpavoidfringebrekageof workpiecewhenmachiningcastiron | |
75° | The main force is radial cutting force, in is often used in general face milling | |
90° | The main force is radial cutting force, in is often used in general face milling |
\Theta SelectionofApproachAngle:
The approach angle is formed by insert and tool body.It affects chip thickness. Cuting forces and toollife.Decreasing the approach angle reduces chip thickness and expandsthe cutting areabetween cutting edge andworkpieceatagivenfeedrate.ASmallerapproachanglealsoensuresstableentryintoorexiting workpiece, protectingthecuttingedgeandextendingtollife.wever,thiswillincreaseaxialcuttingforcesontheworkpiece thusisnotsuitableformachiningthinworkpieceSuchasthinplate.
Approach angle | Feed rate per tooth f | Maximum chip stickiness he |
90° | f. | he&x= f=x sinKr |
75° | f | haα =0.96x f |
60° | f | hax =0.86 x f: |
45° | f | hex =0.707 x f= |
CircularBlade | f | iC -xf: hex=Vicx(c-2a,) |
4PitchSelection
Pitch is the distance between one point on one cutting edge and the same point on the next edge.
Optimizedstability | ||
L (Low) | M(Medium) | H (High ) |
Coarse pitch | Close pitch | Extra close pitch |
When the milling width is equal to diamete of cutter, the machining systemisstableandmainpower of machine is sufficient, the use of coarse pitchcanachieve high productive efficiency. | Used ingeneral milling andmultiple mixed productions. | Whenthemilling widthis less than diameter of cutter, cutting bymaximum edgescan achieve high productive effciency. |
Milling Calculation
①General Formula
Vc : cutting speed ( m/min) Dc : nominal diameter of milling tool ( mm ) | V: feed rate of worktable ( feed speed) ( mm/min) f : feed rate per tooth ( mm/z) |
n:spindle speed(rev/min) | π:circumference ratio=3.14 |
Zn : number of teeth | T。 : machining ime ( min) |
Q : metal removal rate(cm"/min) | fn : fed rae pervlution m/rev ) |
●Cutting speed | L:Actual working distance (mm) |
Vc=π×Dxn (m/min) 1000 | |
Spindle speed n =1000xV℃ ( rev/min) πxDc | Vf |
Feed rate of worktable(feed speed) V=f,×n×zn(mm/min) | |
Feedratepertooth | Feed direction |
V (mm/z) nXZn WEE | Minor angle Tooth shape |
OFeedrateperrevolution V (mm/rev) n | Feed rate per tooth(fz) |
●Machining time L (min) | DC |
Metalremovalrate cm²/min Q=a,xaxV |
Difference and Selection Between Down Milling and Up Milling
Climbmiling (alsocalled down miling): thefeed directionof workpieceisthe same as that of the miling rotation at the connectingposition.
Conventional miling (also called up milling): the feed direction of workpiece is opposite to that of the miling otation at the connectingposition.

In down miling. the major force of cutting edge is the compresive stress, while in up miling is the tensile stress.The compresive strengthof cemented carbide materialismuchlarger thanits tensile strength.lndown millingas chips become thin from thick gradually,cuting edge and workpiece press against each otherThe frictionbetween edgeand workpieceismall,thusreducing the abrasionof edge,thehardening ofworkpiece surface and the surface roughness (Ra). In up miling. chips become thick from thin gradually.When the insert is cuting into the workpiece, it produces strong friction and more heat than in down miling, and make workpiece surfacehardened.
Inupmilingecauseorizontaldirectionfcuttingforceilingcutterconductingnworkpiecesopposit thefeeddirectionofworkpiece,theleadscrewofworktablejointscloselywithonesideof thescrewnut.Ind millingthedirectionofcuttingforceisthe sameas thefeddirection.Whenedge'sradialforceonworkpieceis large enough, theworktable will bounceleft and right thusmake the gapfall behind.Thegapwillretun to the front side with the continuing rotationof lad screw.At thismment theworktable stopsmotion,however, it wilbounce left and right again when the radial cuting force is large enough again.The periodical bounce of worktable wil causepoorsurfacequalityof workpiece and tool breakage.
Whenusing end millsfordownmilin,theedesalwaysstarts cutting at theworkpiece surface,therefore end millsarenotsuitableformachiningworkpiecewithhardenedsurface
Up milling is recommended for miling thin-wall components or square miling with high requirement for precision.
51 | 2018 | ||||||||
5 | O | ||||||||
10 | 5 | ||||||||
11 | S | S | |||||||
61811 1 | 0 | 2111 | |||||||
0 | 0 | 00000 | 000 | 000 | 00000 | 0000 | |||
S | |||||||||
4 | |||||||||
OSI | 0 | 0 | 0 |
018 | |||||||||||||
O | O | ||||||||||||
SOLWSM | 1 | SOLWSM | 11 | ||||||||||
080411 | 080911 | 006110 | |||||||||||
01601 | 0801 | ||||||||||||
O | O | ||||||||||||
110 | |||||||||||||
20133 | 0 | 22130 | 0 | ||||||||||
111 | |||||||||||||
OSI | 0 | 0 | 0 | 0 | 0 |